Etching of silicon in alkaline solutions : a critical look at the M 1 1 1 N minimum

نویسنده

  • M. Elwenspoek
چکیده

Anisotropic wet-chemical etching of silicon in alkaline solutions is a key technology in the fabrication of sensors and actuators. In this technology, etching through masks is used for fast and reproducible shaping of micromechanical structures. The etch rates RMhklN depend mainly on composition and temperature of the etchant. In a plot of etch rate versus orientation, there is always a deep, cusped minimum for the M1 1 1N orientations. We have investigated the height of the M1 1 1N etch-rate minimum, as well as the etching mechanisms that determine it. We found that in situations where masks are involved, the height of the M1 1 1N minimum can be influenced by nucleation at a silicon/mask-junction. A junction which influences etch or growth rates in this way can be recognized as a velocity source, a mathematical concept developed by us that is also applicable to dislocations and grain boundaries. The activity of a velocity source depends on the angle between the relevant M1 1 1N plane and the mask, and can thus have different values at opposite M1 1 1N sides of a thin wall etched in a micromechanical structure. This observation explains the little understood spread in published data on etch rate of M1 1 1N and the anisotropy factor (often defined as R 100 /R 111 ). ( 1999 Elsevier Science B.V. All rights reserved. PACS: 81.65.Cf; 61.72.Bb; 81.10.Aj

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication and Optical Characterization of Silicon Nanostructure Arrays by Laser Interference Lithography and Metal-Assisted Chemical Etching

In this paper metal-assisted chemical etching has been applied to pattern porous silicon regions and silicon nanohole arrays in submicron period simply by using positive photoresist as a mask layer. In order to define silicon nanostructures, Metal-assisted chemical etching (MaCE) was carried out with silver catalyst. Provided solution (or materiel) in combination with laser interference lithogr...

متن کامل

Structural and optical properties of n- type porous silicon– effect of etching time

Porous silicon layers have been prepared from n-type silicon wafers of (100) orientation. SEM, FTIR and PL have been used to characterize the morphological and optical properties of porous silicon. The influence of varying etching time in the anodizing solution, on structural and optical properties of porous silicon has been investigated. It is observed that pore size increases with etching tim...

متن کامل

Fabrication of p-Type Nano-porous Silicon Prepared by Electrochemical Etching Technique in HF-Ethanol and HF-Ethanol-H2O Solutions

Nano-porous silicon were simply prepared from p-type single crystalline silicon wafer by electrochemical etching technique via exerting constant current density in two different HF-Ethanol and HF-Ethanol-H2O solutions. The mesoporous silicon layers were characterized by field emission scanning electron microscopy and scanning electron microscopy. The results demonstrate that the width of nano-p...

متن کامل

Nanowires fine tunable fabrication by varying the concentration ratios, the etchant and the plating spices in metal-assisted chemical etching of silicon wafer.

The metal-assisted chemical etching (MACE) was used to synthesis silicon nanowires. The effect of etchant concentration, etching and chemical plating time and doping density on silicon nanowires length were investigated. It is held that the increasing of HF and H2O2 concentrations lead to etching rate increment and formation of wire-like structure. The results show that, the appropriate ratio o...

متن کامل

VERY DEEP TRENCHES IN SILICON WAFER USING DRIE METHOD WITH ALUMINUM MASK

Abstract: In this paper, a DRIE process for fabricating MEMS silicon trenches with a depth of more than 250 m is described. The DRIE was produced in oxygen-added sulfur hexafluoride (SF6) plasma, with sample cooling to cryogenic temperature using a Plasmalab System 100 ICP 180 at different RF powers. A series of experiments were performed to determine the etch rate and selectivity of the some m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999